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Abstract. We have studied the energy spectrum and magnetotransport of a parabolic one-
dimensional channel in the presence of periodic modulations in both magnetic field and the
electrostatic potential. The periodic modulations change the sub-band energy–wave-vector
relation and produce mini-gaps at specific wave-vectors. The gaps exist even if there is only
modulation in the magnetic field. For the cases where the two kinds of modulation are in phase or
out of phase, we give the explicit expressions for the values of the gaps. In the ballistic transport
regime, the conductance is expected to remain quantized and to evolve in a simple manner as
a function of the Fermi energy. Starting from linear response theory, the transport properties
are studied numerically, taking into account the impurity scattering. Calculations related to
magnetic field modulation show that a series of cusps in the conductance are produced, whose
magnitude depends strongly on the degree of impurity scattering. The structure of these cusps
can be explained in terms of the energy band structure.

1. Introduction

In recent years, the physics of electrons subjected to magnetic fields which are inhomo-
geneous on the nanometre scale has attracted much attention. In two dimensions (2D),
the magnetotransport of electrons in the presence of a weak periodic modulation of the
magnetic field has been studied theoretically [1–4]. The results obtained are interesting, and
some of them have now been verified experimentally with the advances in the techniques
used to achieve the desired inhomogeneous magnetic field profile [5, 6]. The magnetic
field modulation of 2D electron gas can be realized by integration of the heterostructure
with strips of magnetic material or superconducting films. However, there is difficulty in
observing the effects caused by quantum structures of inhomogeneous magnetic fields such
as magnetic quantum steps, barriers, and magnetic wells [5–7]. Firstly, it is not easy to
realize experimentally the large magnetic field needed if one is to observe a convincing
effect of bound or scattered states. Secondly, the deposition of magnetic materials or
superconducting films always introduces strains, which will have an effect on the electric
potential beneath them. Although a much stronger magnetic field could be alternatively
achieved by bending the structure [8], such a structure seems to be more complicated when
it is considered in the study of electrons in the ballistic regime. In this paper we will study
theoretically the properties of one-dimensional (1D) electronic systems in the presence of
1D periodic modulations in both magnetic field and electrostatic potential.
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Transport in 1D systems has itself been extensively investigated in the past few years.
Most of the work concentrated on tiny structures in which the electron transport is ballistic
and the electron motion is governed by quantum mechanics. An important example of an
interesting phenomenon is the quantization of the conductance in units of 2e2/h in the
linear response regime [10]. For longer channels, the electron transport can no longer be
ballistic, because the scattering from the imperfection plays an important role. Calculations
based on the Boltzmann equation for a system with discrete sub-bands and a discontinuous
density of states predicted a so-called quantum-size effect, i.e., discontinuity in the transport
coefficients as the Fermi energy or the width of the channel of the 1D system is changed
[11]. Unfortunately, the discontinuities observed experimentally have not been as sharp
as predicted, and in some cases discontinuities have not been observed at all [12]. Such
disagreements led to the development of a transport model based on Green function theory
in which scattering caused by impurities is taken into account [13, 14]. It has been shown
that the broadening of the electronic states ignored in the Boltzmann theory results in a
general smearing out of the quantum-size effect. Although the calculations considered only
the elastic scattering from randomly distributedδ-function impurities, the results were shown
to reduce to those of Boltzmann theory in the low-impurity limit; the effect of broadening
becomes more important as the impurity concentration increases, and the quantum-size
effect will disappear when the impurity concentration is high enough.

In this paper we study, in section 2, the sub-band structure of a one-dimensional channel
in the presence of a periodic modulation in magnetic field and its consequences for the
electron transport in the ballistic regime. In section 3, we use the Green function approach
to calculate the magnetotransport of 1D channels when the effects of impurity scattering are
taken into consideration. Numerical results for the corrections to the electrical conductivity
due to the periodic modulation are presented in section 4. A brief summary and comments
are given in section 5.

2. Transport in the ballistic regime

The one-dimensional electron system is defined in the two-dimensional electron system in
the xy-plane by adding a parabolic confinement in they-direction. A magnetic field of
strengthB0 is applied in thez-direction. If we choseA = (−B0y, 0, 0) as the gauge for
the vector potential, then the Hamiltonian for a electron with effective massm is

Ĥ0 = [(Px − eB0y)
2+ P 2

y ]/2m+m�2y2/2 (1)

where the second term comes from the parabolic confinement whose strength is indicated
by the characteristic frequency�. The solution of the Hamiltonian is now well known [16].
The energy of the system is of the type

En = h̄(ω2
c +�2)1/2(n+ 1/2)+ P 2

x

2m

�2

ω2
c +�2

(2)

with ωc = eB0/m being the cyclotron frequency, depending on the uniform magnetic field
B0. The corresponding wave-function is of the form

9n(x, y) = ψn(y − y0) exp(iPxx/h̄) (3)

where the function

ψn(y − y0) = NnHn
(
y − y0

a0

)
exp

[
−1

2

(
y − y0

a0

)2]
(4)
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is the wave-function of an oscillator with magnetic lengtha0 = [h̄/{m(ω2
c +�2)1/2}]1/2 and

centred aty0 = [Px/(eB0)]ω2
c/(ω

2
c +�2).

If the channel is further modulated by a periodic magnetic pattern, then the Hamiltonian
of the system becomes more complicated. To our knowledge, there is no experiment
described in the literature that is concerned with the 1D electron gas modulated by a periodic
magnetic field, so we present here only theoretical calculations. Judging by the success in
achieving electric or magnetic modulation in the 2D electron gas [5–7], the system studied
here may be realized in the near future with the improvement of experimental techniques.

When a modulation in the magnetic field is present, there is a variation in space of the
magnetic field. From experience with experiments involving magnetic modulation in 2D
electron gases, an important point is apparent. Deposition of magnetic or superconducting
materials on the surface exerts mechanical stress on the underlying semiconductor, and leads
to an electrostatic modulation in addition to the magnetic one [5–7]. We consider first the
simplest case in which the periodic modulation leads to only one sine or cosine component
in space. We assume that the magnetic field can be written in the form

Bz = B0+ B1 sin(Kx) (5)

whereB0 represents the average magnetic field,B1 the amplitude of the modulation, and
K = 2π/a, with a being the period in real space. At the same time, there should be a
periodic modulation of the electrostatic potential, which could be applied in a direct way
or caused by a side effect such as the stress induced when magnetic modulation is realized
in an experiment. It is further assumed that, apart from a constant, the electric modulation
has the form

V (x) = VE sin(Kx + φ) (6)

whereφ is the phase difference between the electric and magnetic modulations.
When effects arising from spin are neglected, the general Hamiltonian operator of the

system is then

Ĥ = P 2

2m
+ e

2m
(P ·A+A · P )+ e

2A2

2m
+ V (x)

= P 2

2m
+ e

m
A · P − ieh̄

2m
∇ ·A+ e

2A2

2m
+ V (x). (7)

We take the vector potential to be of the form

A = (−B0+ B1 sin(Kx))(y, 0, 0) (8)

where the total Hamiltonian can be separated into two parts:

Ĥ = Ĥ0+H1. (9)

HereH0 is the Hamiltonian for a homogeneous system as described by (1). The term

H1 = −(eB1Pxy/2m) sin(Kx)+ (ieh̄KB1y/2m)

× cos(Kx)+ (e2B0B1y
2/m) sin(Kx)+ VE sin(Kx + φ) (10)

arises from modulation effects. For such a Hamiltonian, it is in principle difficult to obtain
any exact analytical solution, now that it depends on bothx andy. To find the solution, firstly
we assume that the term describing the effects of modulation is small compared with that
for the homogeneous field, and consequently the former can be regarded as a perturbation
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of the latter. Secondly, the variabley in (10) is replaced by its expectation value in the
unperturbed states described above. That is to say, we make use of the replacements

〈y〉 = y0

〈y2〉 = y2
0 + a2

n(n+ 1/2)
(11)

in (10). As a result, the following equation is obtained:

H1 =
(

ω4
c

(ω2
c +�2)2

− ω2
c

ω2
c +�2

)
sin(Kx)

B1

B0

P 2
x

m
+
(
B1

B0

ω2
c

ω2
c +�2

cos(Kx)

)
i h̄KPx

2m
+ VH(n) sin(Kx)+ VE sin(Kx + φ) (12)

where

VH(n) = e2B0B1

[
h̄

m(�2+ ω2
c )

1/2

]
(n+ 1/2) (13)

which depends on the sub-band indexn. The Hamiltonian is now reduced to a one-dim-
ensional form.

In a real experiment, the shape of the deposited magnetic or superconducting material is
most probably symmetric with respect to the two directions along the wire. So we have in
fact only two cases,φ = 0 andφ = π/2, that need consideration. In the case whereφ = 0,
i.e., when the electric modulation is in phase with the magnetic one, the Hamiltonian in (9)
reads

Ĥ (x) = (A− 2B sin(Kx))
P̂ 2
x

2m
+ 2iC(cos(Kx))Px + (VE + VH(n)) sin(Kx). (14)

In the case whereφ = π/2, i.e., when the electric modulation is out of phase with the
magnetic one, the Hamiltonian in (9) reads

Ĥ (x) = (A− 2B sin(Kx))
P̂ 2
x

2m
+ 2iC(cos(Kx))Px + VE cos(Kx)+ VH(n) sin(Kx). (15)

In the above two equations, we have made use of the following notation:

A = �2/(�2+ ω2
c )

λ = 1− A
B = λ(1− λ)B1/B0

C = h̄KλB1/4mB0.

When the length of the wireL is so long that the length is much larger than the period
a, there is translational invariance along the direction of the wire. We look for a solution
for the wave-function following Bloch’s theorem:

9k,n(x, y) = uk,n(x)ψn(y − y0) exp(ikx) (16)

where

uk,n(x) = uk,n(x + a).
Note that the wave-vectork is a good quantum number. Just as for a 1D periodic electric
potential, the wave-function depending onx may be expressed as a Fourier series summed
over all possible values of the wave-vector. The outcome of this is the central equation, a set
of algebraic equations derived from (14) and (15). We write down the matrix of coefficients
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determined from five successive equations of the central equation. The condition for a
non-trivial solution of the coefficients is [9]

det


γ (2)− Ek α(2) 0 0 0
β(1) γ (1)− Ek α(1) 0 0

0 β(0) γ (0)− Ek α(0) 0
0 0 β(−1) γ (−1)− Ek α(−1)
0 0 0 β(−2) γ (−2)− Ek

 = 0 (17)

wherej is an integer,γ (j) = Ah̄2(k+jK)2/2m, and the parametersα andβ are respectively
defined as

α(j) =
{

i[Bh̄2(k + jK)2/2m+ Ch̄(k + jK)− (VE + VH(n))/2] for φ = 0

VE/2+ i[Bh̄2(k + jK)2/2m+ Ch̄(k + jK)− VH(n)/2] for φ = π/2
and

β(j) =
{
−i[Bh̄2(k + jK)2/2m− Ch̄(k + jK)− (VE + VH(n))/2] for φ = 0

VE/2− i[Bh̄2(k + jK)2/2m− Ch̄(k + jK)− VH(n)/2] for φ = π/2.

Please note that the above matrix reduces gradually to the standard form for a periodic
electric potential if the amplitude of the magnetic field modulation decreases. We further
proceed to assume that only two sets of coefficients are important when a wave-vector state
is in the vicinity of the Brillouin zone boundary, determined by the periodicitya. It is
found that the gap centred at|k| = K/2 is

1n =


∣∣∣∣h̄2K2

4m

B1

B0
(1− A2)− (VE + VH(n))

∣∣∣∣ φ = 0{
V 2
E +

[
h̄2K2

4m

B1

B0
(1− A2)− VH(n)

]2}1/2

φ = π

2

(18)

which is a function of the sub-band indexn. In an idealized situation where there is only
the magnetic field modulation and no side effect is present, i.e.,VE = 0, the gap becomes
simplified:

1n =
∣∣∣∣h̄2K2

4m

B1

B0
(1− A2)− VH(n)

∣∣∣∣. (19)

This magnetic-field-induced energy gap is proportional to the amplitude of the modulation
B1. The formation of these gaps has important implications for the transport in the system.
It is well known that there is a one-to-one correspondence between the index of a quantized
conductance plateau and the number of transverse bands with positive group velocity in the
electrically modulated 1D systems. This conclusion was drawn from a comparison between
the calculated conductance and the band structure, and even holds in the presence of an
applied homogeneous magnetic field [18]. For a structure with several magnetic barriers or
wells, we have performed numerical calculations of the same kind using the transfer-matrix
method. We have come to the same conclusion—that the conductance is quantized, and
the number of quantized plateaus is equal to the number of transverse modes with positive
group velocity in the structure. The effects of the magnetic field barriers or wells is to cause
inter-mode scattering.

The relationship between the band structure and the conductance in the ballistic regime
is shown schematically in figure 1. In the figure, we have assumed that there is only one
component of modulation present in the system, and therefore the gaps are opened only
in the vicinity of the wave-vector|k| = K/2. The gaps shown are only to guide the
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Figure 1. A schematic view of the correspondence between the conductance and the Fermi
energy of the electrons for a parabolic quantum wire in the presence of a perpendicular magnetic
field. The gaps are opened as a result of modulations of the magnetic field and electric potential.
In this figure, it is assumed that there is only one single component of sine or cosine modulation,
characterized byk0 = π/a.

eyes though; their values vary with the different sub-bands. In principle, there should be
changes in the curvature of the energy–momentum relation in the vicinity of a gap; these
are neglected in the figure. This seems to be important, because of the divergence of the
density of states near a gap. According to a formalism starting from Boltzmann’s transport
equation, such a divergence leads to a large discontinuity in the conductance. However, the
experimental search for the conductance discontinuity will not be successful. The reason
for this is that the Boltzmann equation fails to provide a correct description when the Fermi
energy is near the sub-band edge. The best way to see this is to consider the effect of
scattering from impurities using the Green function approach, and this will be discussed in
the next section. We believe that the discontinuity is finite even in the limit of an impurity-
free system, as demonstrated by the quantum mechanical calculations for tiny structures. If
scattering from imperfections is to be neglected, the quantized conductance is determined
by the number of transverse modes with positive group velocity, not by the exact value of
the velocity.

3. Effects of elastic scattering

In the idealized model discussed in the above section, we have ignored all effects arising
from all kinds of scattering, i.e., the electron transport is assumed to be ballistic. This is
a good approximation when we are dealing with a high-purity sample, or, more precisely,
when the sample length is much less than the electron mean free path. However, for a
longer wire, the effects due to scattering become so important that the picture of quantized
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conductance breaks down. In a real system one should take into account such effects as
impurity scattering, surface roughness, and variations in the widths of the wire. Recent
theoretical work on these subjects has shown that an account of elastic scattering due to
weak disorder is enough to show the general picture [11–14]. The simple case considered is
that in which electrons are scattered by randomly distributedδ-function impurities described
by the potential

Vi(x, y) = aI
∑
g

δ(r −Rg) (20)

where aI defines the strength of the scatterer andRg represents random sites. These
scatterers cause lifetime broadening of the multiply occupied 1D sub-band of the system.
When there is no magnetic field, the lifetimes are found to differ from sub-band to sub-
band, independently of the wave-vector in the wire direction. The scattering is stronger
when the energy is near the edge of a sub-band, and thus there is a peak in the density
of states. These peaks in the density of states, unlike the infinite jumps predicted by a
simple consideration, depend strongly on the strength and density of the scatterers, and are
consistent with experimental observations [11–14]. When there is an magnetic field applied
perpendicular to the wire, the imaginary part of the self-energy of a parabolic 1D wire is
determined by the self-consistent set of equations [16, 17]

0n,k(E) =
∑
n′

∫
dk′

2π
|〈n, k|Vi |n′, k′〉|2 0n′,k′(E)

[E − En′(k′)]2+ 02
n′,k′(E)

. (21)

Here the configurational average for a parabolic confinement is

|〈n, k|Vi |n′, k′〉|2 = a2
INi

∫ ∞
−∞

dy ψ2
n(y − y0)ψ

2
n′(y − y ′0) (22)

whereNi is the density of impurities. The real part of the self-energy is as usual believed
to be unimportant, and is not considered in the present context. The degree of scattering is
measured by the parameter

p = a2
INi (23)

which means that a stronger scattering is expected when there are more impurity scatterers
interacting more strongly with electrons. In the calculations shown below, we have chosen
a specific value ofp = p0 such that the solution for the level broadening0 is of the same
order of magnitude as the characteristic level separation ¯h�. The larger the value ofp, the
stronger the scattering effects.

The magnetic field leads to a reduction of the scattering matrix elements for large
momentum transfer, and therefore the lifetimes depend not only on the sub-band, but also
on the wave-vector in the wire direction [14, 16]. Furthermore, the peaks in the total density
become more widely spaced, and increase in magnitude as the magnetic field is increased. A
wider space between peaks can be easily explained by the energy spectrum (2). Increase in
the peak height is very important from an experimental point of view. A sharpened feature
would lead to a greater possibility of observing structure owing to sub-band structure, since
sub-band structure may be masked at zero magnetic field by other scattering mechanisms
that have been ignored. This is why the experiments in reference [17] and reference [16]
succeeded in observing the structure due to sub-band depopulation by varying the magnetic
field rather than the Fermi energy.

The conductivity in one dimension is [12–15]

σ = −e2h̄
∑
n

∫
dk

2π
v2
k

∫
dE

2π
A2
nn(k, E)

∂f (E)

∂E
(24)
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whereAnn(k, E) is the spectral function, andvk = ∂E(k)/∂k/h̄ is the group velocity of the
particle. This formula, derived under the condition of zero temperature and in the linear
response regime, is in fact valid not only for free electrons, but also for quasiparticles.

Figure 2. The conductivity versus the Fermi energy for a normal wire under an applied magnetic
field, but where there is no modulation of any kind. The dashed lines are drawn to indicate the
number of occupied sub-bandsn. From top to bottom, the scattering effects become stronger,
as indicated by the parameterp. The meanings ofn andp are the same in the figures below.

We have numerically solved the self-consistent equations (21) for the lifetime broadening
0 for up to four occupied sub-levels. The conductivity is plotted as a function of the Fermi
energy in figure 2. The parabolic confinement is characterized by the energy interval
h̄� = 3 meV, and there is a magnetic field ofB0 = 2 T. The parameters are so chosen that
the parabolic confinement and magnetic field terms are of comparable magnitude, and thus
the electron states are best described as hybrid magnetoelectric states. We have scaled the
Fermi energy in terms of the separation between the hybrid sub-levels, which is related to
the confinement and the magnetic field by

h̄�b = (ω2
c +�2)1/2. (25)

As the Fermi energy is increased, more sub-bands will be occupied. This is indicated in the
figure by the dashed lines, and the numbern is the index of the occupied sub-band. When
a new sub-band is opened, there is a sudden drop in the conductance, which is attributed
to the reduction of the dimensions due to the parabolic confinement and is the so-called
quantum-size effect. The calculations were performed for different degrees of scattering.
The behaviours of the lifetime are found to be similar to those found in reference [16], in
which the authors used a square-box model for the wire. When the scattering is weaker, the
jump in the conductance is larger. The structure of the conductance jump will be removed
if the scattering is strong enough, which is in agreement with the numerical calculations
made by Kearney and Butcher [13]. The impurity scattering makes it difficult to observe
the predicted structure experimentally by varying the Fermi energy.

A better way to observe the conductance change due to 1D confinement is to use
the process of electron depopulation; i.e., at relatively constant Fermi energy, varying the
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Figure 3. The conductivity versus the magnetic field for a normal wire at constant Fermi energy
without modulation. This figure is qualitatively consistent with the experiment in reference [14],
where the magnetoresistance of a channel was measured.

applied magnetic field will cause electrons to fill or to empty a sub-band as in the experiment
of Berggrenet al [16]. The numerical results are shown in figure 3. The Fermi energy is
kept constant,EF = 3.8h̄�, and the magnetic field varies from a low value continuously
to a higher one. At low magnetic field, there are four initially occupied sub-bands. As the
magnetic field is increased, the sub-level separation increases according to equation (25),
resulting in the process of electron depopulation. Finally, in the high-field limit, only the
lowest sub-band is occupied by electrons. This seems to be the inverse of the process
occurring with increasing Fermi energy in figure 2. It can be seen that when a sub-band
becomes empty, there is a jump—not a drop—in the conductivity. In a real sample at finite
temperature, the sudden jump or drop will evolve into a continuous rise or decrease—i.e.,
oscillation of some kind in the conductivity—because there is always a small proportion
of the electrons that are excited into higher energy states. Experiments have observed this
kind of oscillation in the magnetoresistance of 1D channels, and have shown that at a lower
field the structure associated with depopulation of sub-bands may be masked by quantum
fluctuations [16].

4. Corrections to the conductance due to magnetic modulation

As discussed in section 2, a periodic modulation in the magnetic field or electric potential
causes mini-gaps at specific wave-vectors and produces structure in the conductance. If
the two kinds of modulation have the same period, the values of the mini-gaps can be
determined analytically by using equation (18) under some reasonable conditions. As far as
conductance is concerned, the most important consequence for a wave-vector falling into a
gap region is that the group velocity of the electron becomes zero, and thus this state does
not contribute to the conductance. Because all of the formalism in equations (21) and (22)
is in terms of the good quantum numbersk and n, it can also be applied to the case in
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Figure 4. The correction to the conductivity due to magnetic modulation. The curves are plotted
as functions of the Fermi energy for different degrees of disorder. The modulation is taken to
be of the formBz = B0 + B1 sin(Kx), and no electric potential modulation is present.

Figure 5. The correction to the conductivity due to magnetic modulation. The curves are plotted
as functions of the average magnetic field for different degrees of disorder. The modulation is
taken to be of the formBz = B0+B1 sin(Kx), and it is assumed that there are no side effects,
and therefore that there is no electric potential modulation.

which there is modulation as well.
Figure 4 and figure 5 show the changes in conductance that occur when a magnetic field

modulation of the formBz = B0 + B1 sin(Kx) is added, as functions of the Fermi energy
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and the average magnetic field respectively. Hereσ0 is the one-dimensional conductivity as
in figure 2 or figure 3, andσ is the conductivity when the modulation is added to the system.
In the numerical calculations we have assumed that the confinement strength is ¯h� = 3 meV,
the period of the modulation isa = 0.5 µm, and the amplitude of the modulation is
B1 = 0.2 T. Several plots are again presented for different degrees of scattering from
impurities. No electric potential modulation is included in the calculations here, because
there is not yet a simple description available for the deformation or the stress-induced
effects on the electrostatic potential. We believe that the general picture will not change
drastically, since the formalism is general, and can include effects from both the magnetic
field modulation and the possible modulation in the electrostatic potential. Furthermore, the
properties of a 1D system such as an energy band structure and its effect on the transport
exposed to a periodic modulation is now understood more clearly, and consequently the
emphasis will be kept on the effects arising from magnetic field modulation.

It can be seen that the main feature of the effect of the addition of a periodic magnetic
field modulation is the reduction in the conductivity in specific regions of the Fermi energy
or magnetic field, where gaps are opened. Theoretically there is a one-to-one correspondence
between these regions and the centres of the mini-gaps in the energy spectrum. This is not
a surprise, because the results in figure 4 are in fact the counterpart of those in figure 1
for when the effects of impurity scattering are taken into account. However, there are
some differences between them. Firstly, the effect is now sub-band dependent, which is
demonstrated in figure 4 or figure 5 by a higher peak value for a larger sub-band indexn.
Secondly, the widths of the peaks in figure 4 are wider than the values of the respective
mini-gaps determined by equation (19). The effect on the conductance spreads over a wider
region for a stronger impurity scattering, besides which the peaks are significantly reduced.

Since in a real sample with modulation, the conductance may be viewed as a
superposition of figures 2 and 4 or figures 3 and 5, it is interesting that we find that
the peak values of the correction to the conductance due to modulation are in general one
order of magnitude smaller than the original conductance. For the parameters used in our
calculations, the following relation is obtained:

σ0/(σ0− σ) ≈ 10–20 (26)

which is almost independent of the strength of the impurity scattering. This may be
important from the point of view of the experimentalist. However, to compare with
experiments we have to take into consideration in our calculations the possible electrostatic
potential modulation when a magnetic field modulation is realized.

5. Summary

We have studied the energy spectrum and conductance of a model 1D electron system, in
the presence of sine or cosine periodic modulations in a magnetic field and an electrostatic
potential. Under the idealized condition of ballistic transport, the conductance should remain
quantized and evolve in the manner shown in figure 1 as a function of the Fermi energy.
The periodic modulations change the sub-band energy–wave-vector relation and produce
mini-gaps at specific wave-vectors, and therefore induce cusps in the conductance. The
main features of such a relationship do not change drastically when the scattering from
impurities is taken into account. Both the quantum-size effect and the correction of the
conductance due to modulations are sensitive to the impurity density and the strength of
the scattering potential, and will be drastically reduced if the scattering becomes stronger.
These conclusions, based on calculations for zero temperature and in the linear response
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regime, should remain valid in describing transport in a real channel at low temperature.
For a real system with a general periodic modulation, what we need to do is to express the
potential and magnetic field in Fourier series. Every single component of the modulation
makes a contribution, as shown in the present paper.
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